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Abstract

Evaluating (and mitigating) the potential negative effects of
algorithms has become a central issue in computer science.
While research on algorithmic bias in ranking systems has
dealt with disparate exposure of products or individuals, less
attention has been devoted to the analysis of the disparate ex-
posure of subgroups of online users.
In this paper, we investigate the visibility of minorities in peo-
ple recommender systems in social networks. Specifically, we
consider a bi-populated social network, i.e., a graph where the
nodes belong to two different groups (majority and minority)
and, by applying state-of-the-art people recommenders, we
analyze how disparate visibility can be amplified or mitigated
by different levels of homophily within each subgroup.
We start our analysis on real-world social graphs, where
the two subgroups are defined by sensitive demographic at-
tributes such as gender or age. Our findings suggest that the
way and the extent to which people recommenders can pro-
duce disparate visibility on the two subgroups, might depend
in large part on the level of homophily within the subgroups.
To verify these findings, we move our analysis to synthetic
datasets, where we can control characteristics of the input so-
cial graph, such as the size of the minority and the level of ho-
mophily. Our results show that homophily plays a key role in
promoting or reducing visibility for different subgroups un-
der various combinations of dataset characteristics and rec-
ommendation algorithms.

1 Introduction

People recommender systems, also known as contact rec-
ommenders or who-to-follow link recommenders (Guy and
Pizzato 2016; Sanz-Cruzado and Castells 2018a), suggest
to users possibly relevant new connections. These algo-
rithms are a core functionality of every social media plat-
form, as they contribute to stimulate new interactions, ul-
timately affecting the growth of the network (Su, Sharma,
and Goel 2016). As such, they can play a key role in build-
ing the “social capital” of individuals (e.g., their number of
followers). Besides general-purpose social networking plat-
forms, people recommenders are also widely used to sug-
gest connections between users in other environments, such
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as employment services (Heap et al. 2014; Liu et al. 2016b;
2016a; Ha-Thuc et al. 2016; Domeniconi et al. 2016), ed-
ucational services (Vassileva, McCalla, and Greer 2016;
Zhang et al. 2016), co-workers suggesting (Guy, Ronen, and
Wilcox 2009) or expert finding (Hsu, Li, and Tseng 2016;
Spaeth and Desmarais 2013; Guy et al. 2013).

It is thus of great importance to study potential algorith-
mic bias that might lead to disparate visibility of individu-
als. For instance, Su, Sharma, and Goel (2016) analyzed the
abrupt changes in Twitter’s network structure after the in-
troduction of the “Who to Follow” feature, and found that
users across the popularity spectrum benefitted from the
recommendations; however, the most popular users prof-
ited substantially more than the average. Similar findings
were reported by Daly, Geyer, and Millen (2010), who con-
ducted a large-scale user study on IBM’s Social-Blue so-
cial network site. While these two works focus on the in-
equalities at the level of individual users, some authors have
analysed a glass ceiling1 effect for women in social net-
works (Nilizadeh et al. 2016). For instance, Stoica, Riederer,
and Chaintreau (2018) investigate the role of gender in or-
ganic and artificial growth of social networks, using a large
social graph from Instagram, where women are the major-
ity. Their theoretical model predicts a glass ceiling at the
expense of a minority, but their empirical observations show
a glass ceiling effect against the female majority. They ex-
plain this apparent contradiction by the different level of ho-
mophily of the two groups.

In this paper, we provide a systematic analysis of the effect
of homophily on disparate visibility of minorities in people
recommender systems. Homophily, the tendency of people
to connect with others who are similar to them, is one of the
main driving forces behind the organic growth of a social
network, thus strongly influencing the main input of people
recommender systems, i.e., the structure of the network. The
next toy example shows the potential effect of homophily on
the recommendations provided by an algorithm.
Example. Figure 1 depicts two social networks. In both
cases, initially (left) each social graph has ten nodes: 7 in
the majority group (blue), and 3 in the minority group (red).

1This is a metaphor referring to a sort of invisible barrier that
prevents a group of people from rising in a hierarchy.
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starting graph recommendations

Figure 1: (Best seen in color.) Example depicting the role of
homophily in a recommender system. Two social networks
(top and bottom) are composed of ten nodes: 7 in the ma-
jority group (blue), and 3 in the minority group (red). The
graphs are directed: a link (u, v) indicates the fact that u
follows v. The graphs in the center reports the links recom-
mended using the color of the node which is recommended.

However, in the bottom case the minority exhibits a stronger
level of homophily: users belonging to the minority (red)
group tend to connect among themselves more than the ones
in the network on the top case (a more formal definition of
homophily will be given in Section 3). We assume a “prefer-
ential attachment” recommender, which suggests to connect
to the node with the highest number of followers from the
set of nodes at distance 2, i.e., nodes followed by her neigh-
bors. The graphs in the center column depict the recommen-
dations produced, where the color of an edge is the same as
that of the node who gets recommended to a source user. It is
evident that homophily allows minorities to get much more
visibility with respect to a less homopilic scenario (i.e., in
the bottom network of the mid column, the number of red
edges has increased with respect to the one above it, while
that of the blue nodes has decreased).
Paper contributions and roadmap. In this paper, we
characterize the visibility given by different recommenda-
tion algorithms to different groups of users, as a function
of their relative sizes and the homophily of each group.
We perform experiments with both real-world social net-
works, with groups defined by sensitive features such as
gender or age, and synthetic graphs where we can explore
different combinations of majority/minority sizes and ho-
mophily. This study sheds light into phenomena that suggest
we must measure and mitigate negative effects of recom-
mender systems, including user discrimination and unfair-
ness (Ekstrand, Burke, and Diaz 2019) and a network’s pos-
sible lack of resilience (Garcı́a, Mavrodiev, and Schweitzer
2013). Specifically, our paper makes the following contribu-
tions:

• We provide a systematic study of the disparate visibility
produced by contact recommendation algorithms, on real
social networks and on synthetic datasets;

• We show that homophily plays a key role in the visibil-
ity given to different groups; when the minority is ho-

mophilic, there is a disparate visibility in favor of the mi-
nority class; when the minority is not homophilic, the dis-
parate visibility is in favor of the majority class;

• Consistently with the literature, our analysis shows that
recommenders amplify the rich-get-richer phenomena,
thus introducing inequality of visibility. Such observed
inequality, however, is stronger within the minority class
compared to the majority class, especially when the mi-
nority is homophilic. This is explained by the fact that the
minority class is over-represented in the sub-population
of most recommended nodes when the minority is ho-
mophilic, and under-represented when the minority is not
homophilic;

• We show that, when taking into account the initial in-
degree, nodes in the minority class are disadvantaged in
terms of visibility, regardless of the homophily of the mi-
nority class. In other words, among nodes with similar in-
degree, the ones that belong to the majority class are likely
to be recommended more;

• Finally, we show that the relative size of the minority does
not impact visibility as much as homophily does.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 introduces the metrics and
algorithms we consider. Section 4 presents the experiments
performed on real graphs and Section 5 those on synthetic
graphs. Finally, Section 6 presents our conclusions.

2 Related Work

Su, Sharma, and Goel (2016) analyze a large-scale propri-
etary dataset containing a complete snapshot of Twitter and
its “Who-To-Follow” recommender. Specifically, they study
user behavior before and after the introduction of the recom-
mender system in this social platform. They found a faster
in-link growth for popular nodes, with a sub-linear popu-
larity effect. In contrast with our work, user demographics
were not taken into account and consequently, the role of
homophily was not considered. We also consider more than
one algorithm and measure the effect of the recommender at
both the individual and the group level. Our study suggests
that node popularity (in our case, represented by in-degree)
is not the only crucial factor needed to characterize the rich-
the-richer phenomenon, since popular nodes are treated dif-
ferently according to the group they belong to (i.e., majority
or minority) and the level of homophily in a group.

Daly, Geyer, and Millen (2010) investigated how recom-
mendations can affect the global and local structure of a net-
work. They focused on differences in topological features
such as degree distribution skewness and node betweenness.
In contrast, in our study we consider more properties of the
nodes (such as the group they belong to and the visibility
they obtain), in addition to characteristics such as node de-
gree that have been previously studied.

Nilizadeh et al. (2016) were able to prove a glass ceil-
ing effect in social networks. They investigated how per-
ceived gender and online visibility can be linked, showing
that users perceived as female experience a “glass ceiling”
effect, similar to the one that makes it harder for women
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to reach higher positions in companies. This study was a
seminal work around discrimination in social media interac-
tions, which exaggerates stereotypes present in society. Our
work tries to go in-depth into this phenomenon, trying to un-
derstand how network interactions along with recommenda-
tion algorithms might lead to disparate visibility of minority
groups (e.g., how homophily affects the generated recom-
mendations).

Lee et al. (2019) analyzed the characteristics of minorities
of different sizes in a bi-populated graph, introducing ho-
mophily in a network growth process. We extend the model
they proposed to analyze recommendation algorithms on
synthetic data.

Karimi et al. (2018) studied disparate effects introduced
by homophily, such as disparities in ranking distribution
over subgroups, but without investigating its consequences
on recommendations. This work strongly motivates ours,
showing the research gap related to recommender systems
effects.

In recent work, Stoica, Riederer, and Chaintreau (2018)
investigate the role of gender in organic and artificial growth
of social networks, using a large social graph from Insta-
gram, where female are the majority class. Their theoretical
model predicts a glass ceiling at the expense of a minority,
but their empirical observations show glass ceiling against
the female majority. They reconcile this apparent contradic-
tion by extending their theoretical model to keep in consid-
eration the different level of homophily of the two groups:
in particular, a homophilic minority can flip the glass ceiling
effect at the expense of the majority. Our systematic analysis
confirms this intuition.

Related to our findings is also the few-get-richer effect
phenomenon, which explains how the minority class tends
to be top-ranked by popularity-based systems. This phe-
nomenon has been analytically proven by a recent work by
Germano, Gómez, and Mens (2019) and, although not em-
bedded in the algorithms we considered, it finds empirical
evidence in our experiments.

3 Preliminaries
We consider a bi-populated and directed social network, rep-
resented as a graph G = (V,E, c) where V is the set of
nodes, E ⊆ V × V is the set of directed edges, such that
an edge (u, v) ∈ E indicates the fact that u follows v,
and c : V → {V1, V2} is a function assigning each node
to one of two classes V1, V2 which partition V . We denote
by s1 the fraction of nodes belonging to the first class (i.e.,
s1 = |V1|/|V |) and by s2 the fraction of nodes belonging to
the second class (i.e., s2 = 1− s1).

We also consider a people recommender system repre-
sented by a function � : (V × V ) \ E → [0, 1], which as-
sociates to each non-existing edge (u, v) a score �(u, v) ∈
[0, 1]. From a probabilistic standpoint, �(u, v) can be inter-
preted as the probability for such recommendation to create
a new connection that is accepted by u. In each round of rec-
ommendation, the system recommends to each node u ∈ V
a set R(u) of other nodes to follow, where |R(u)| = k, for a
given parameter k ∈ N

+. Typically, R(u) will contain top-k
nodes v having the largest values of �(u, v).

Visibility. In this work, we consider one single round of
recommendation and focus on how many times each node v
appears in the recommendation sets of all the other nodes.
We call this quantity the visibility of v and denote it by

ψ(v) = |{u ∈ V |v ∈ R(u)}|.
In particular, we are interested in the fraction of recommen-
dations that each of the two classes of nodes, V1 and V2,
receives. The visibility of a specific subgroup i can be ex-
pressed as:

Vi =
1

k|V |
∑

v∈Vi

ψ(v) (1)

Disparate visibility. Considering the size of the two
groups inside the graph, we can also refer to them as minor-
ity m and majority M , which respectively present relative
size sm and sM . Then, the simplest way for defining differ-
ences in visibility between those two groups of users, used
in ranking systems (Singh and Joachims 2018), is overall
visibility normalized by group size, namely:

Δ(V) =
Vm

sm
− VM

sM
(2)

We call this measure disparate visibility: this measure
ranges in [− 1

sM
, 1
sm

] and it is zero when the visibility (frac-
tion of recommendations) received by the minority is equal
to the relative size of the minority. Therefore, a disparate vis-
ibility close to zero represents a situation in which no group
is favored, large negative values indicate the minority class is
given a disproportionately large visibility, and large positive
values indicate the majority class is given a disproportion-
ately large visibility.

Homophily. Homophily is a well-known phenomenon in
network science and can be expressed as the tendency of
people to connect to similar people, or in our case, of people
in a group to connect to people in the same group. We mea-
sure homophily with respect to a random configuration, in-
spired by work analyzing dyadicity in signed networks (Park
and Barabási 2007):

hi =
|Eii|
|Ei.| − si (3)

where Eii = {(u, v) ∈ E|u ∈ Vi ∧ v ∈ Vi} and Ei. =
{(u, v) ∈ E|u ∈ Vi}. This measure expresses the difference
between the number of observed intra-group edges and the
expected number if edges were created at random. It ranges
in the interval (−si, 1 − si]. A group is called homophilic
if the tendency to connect to nodes of the same group is
stronger than expected (hi > 0), heterophilic when this ten-
dency is weaker than expected (hi < 0), and neutral if the
number of edges towards each group is consistent with the
proportion of nodes in each group (hi = 0).

Recommendation algorithms. We consider four differ-
ent methods for link recommendation and investigate the
node visibility generated by those. One is a baseline random
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recommender, and the other three are state-of-the-art algo-
rithms, representative of three distinct families of methods
(based on topology, random walks, and collaborative filter-
ing), that we have chosen because of their popularity and
performance (Li, Fang, and Sheng 2017; Sanz-Cruzado and
Castells 2018b).

ADA: Network Topology Based. Among the different
heuristics which aim to define similarity between nodes
looking at the graph topology, we select the Adamic-
Adar coefficient (for short “ADA” in the rest of the pa-
per), method that penalizes connections with high degree
nodes.

SLS: Random Walks Based. As representative of
random-walks based approaches, we use SALSA
(Stochastic Approach for Link-Structure Analysis)
(“SLS” in the rest of the paper), which is at the basis of
the who-to-follow recommender at Twitter (Su, Sharma,
and Goel 2016). Recommendation of a generic link is
defined as the probability of the source node to jump to
the target one, rather than to any other node in the graph.

ALS: Collaborative Filtering Based. Connections among
nodes can be considered as implicit feedback in a collabo-
rative filtering approach. An Alternating Least Squares al-
gorithm (“ALS” in the rest of the paper) is selected to per-
form recommendations (Hu, Koren, and Volinsky 2008).
New links are suggested based on latent features extracted
from the adjacency matrix.

RND: Random baseline. As baseline, we consider a ran-
dom recommender (“RND” in the rest of the paper),
which picks recommendations uniformly at random from
the candidate nodes at distance 2.

Aligned with the common practice among social network
providers, such as Facebook2 and Twitter3, which suggest
users with mutual connections, recommendations in our ex-
periments are chosen from the set of missing links at dis-
tance two (friends of friends).

4 Observations on Real-World Graphs

In this section, we analyze data from two social network-
ing sites, exploring how the role of homophily on groups
of nodes can play a role in the generation of recommenda-
tions. We remark that this experimentation is made difficult
because there are very few social networking datasets where
nodes can be partitioned into classes based on demographic
attributes.

4.1 Datasets

TUENTI. Known as the “Spanish Facebook,” Tuenti has
been a popular social networking site in Spain.

The data we use includes some demographic information
about users (Laniado et al. 2016).

Nodes are users and edges are defined by wall-post inter-
actions, i.e., a user posting on another user’s “wall.” Specif-
ically, a directed edge (u, v) exists if user u posted at least

2https://www.facebook.com/help/163810437015615
3https://help.twitter.com/en/using-twitter/account-suggestions

Name Attribute |V | |E| sm hm hM

TUENTI-A16 age 500000 2813744 0.30 0.42 0.14
POKEC-A21 age 500000 8635662 0.46 0.34 0.19
TUENTI-A30 age 500000 2813744 0.04 0.08 0.02
TUENTI-G gender 500000 2813744 0.39 0.02 0.07

Table 1: Characteristics of real-world social networks ana-
lyzed: dataset name, attribute used for partitioning, number
of nodes, number of edges, proportion of the minority size,
homophily of the minority, and homophily of the majority.

t times on the wall of a user v. To remove sporadic interac-
tions, we consider t = 3 as a threshold. This network has
8,983,560 nodes (users) and 17,830,103 edges.

In order to have a fair comparison of the performance with
different datasets, we decided to create samples of equal
size. Finally, the sample size was set to 500,000 nodes, for
computational reasons and due to the large amount of ex-
periments we performed. To sample, we follow the work by
Wagner et al. (2017) and use a random walk based algo-
rithm, which has been shown to preserve characteristics that
are of interest in our analysis, such as the relative sizes of
minority and majority classes, as well as their level of ho-
mophily. The resulting network contains 500,000 nodes and
2,813,744 edges.

Next, we create different bi-populated networks using dif-
ferent partitions by gender and age, whose basic character-
istics are reported in Table 1 and Figure 2 (in the table and
figure, datasets are ordered by decreasing homophily of the
minority):

• TUENTI-G is the network partitioned by gender. It is
characterized by an absence of homophily in both groups
and, among the three partitions of the original dataset,
it is the one with the largest minority class (females,
sm = 0.39).

• TUENTI-A16 is the network partitioned by age with 16
as cut-off. This dataset presents two groups which are
both homophilic, with a smaller minority than the previ-
ous case (younger than 16, sm = 0.30).

• TUENTI-A30 is also based on a partition by age with 30
as cut-off. It presents a very small minority (older than 30,
sm = 0.04) and it lacks homophily in both groups.

POKEC. This is a popular social networking site in Slo-
vakia. Anonymized data is publicly available,4 and includes
some demographic information.

In total, the network contains 1,632,640 nodes (users) and
22,301,602 edges, where each edge represents a “follow”
relationship, which can be non-symmetrical. We adopt the
same sampling approach used for Tuenti and produce a net-
work containing 500,000 nodes and 8,635,662 edges.

We create the two classes of nodes by partitioning by
age with a cut-off of 21. The resulting dataset, dubbed
POKEC-A21, presents quite well-balanced groups (minor-
ity is younger than 21, sm = 0.46), with the minority more
homophilic than the majority.

4https://snap.stanford.edu/data/soc-Pokec.html

168



(a) TUENTI-A16 (b) POKEC-A21 (c) TUENTI-A30 (d) TUENTI-G

Figure 2: In-degree (number of followers) distribution of the minority and majority classes in each social network. We can
observe that in the datasets with a homophilic minoritiy (TUENTI-A16 and POKEC-A21), the minority class exhibits an
advantage in terms of high in-degree nodes.

Network Method Δ(V) Δ(V<q90) Δ(V<q80) Δ(V>q90) Δ(V>q80)

TUENTI-A16 ALS 0.517 0.184 0.086 0.681 0.630

sm = 0.3
SLS 0.264 0.069 0.014 0.464 0.396

hm = 0.42
ADA 0.134 0.071 0.048 0.249 0.209
RND 0.149 0.155 0.154 0.119 0.123

POKEC-A21 ALS 0.900 0.645 0.401 0.985 0.944

sm = 0.46
SLS 0.571 0.312 0.196 0.731 0.653

hm = 0.34
ADA 0.328 0.259 0.208 0.434 0.386
RND 0.310 0.322 0.309 0.285 0.282

TUENTI-A30 ALS -0.276 -0.397 -0.433 -0.224 -0.306

sm = 0.04
SLS -0.350 -0.446 -0.504 -0.251 -0.328

hm = 0.08
ADA -0.359 -0.436 -0.501 -0.200 -0.273
RND -0.333 -0.423 -0.503 -0.105 -0.197

TUENTI-G ALS -0.264 -0.323 -0.292 -0.267 -0.178

sm = 0.39
SLS -0.291 -0.348 -0.324 -0.261 -0.200

hm = 0.02
ADA -0.212 -0.252 -0.235 -0.157 -0.122
RND -0.149 -0.186 -0.168 -0.086 -0.062

Table 2: Disparate visibility (Δ(V) introduced by different
recommenders: Δ(V<q90) and Δ(V<q80) refers to the same
measure when removing the top-10% and top-20% of in-
degree nodes, respectively, from each class; while Δ(V>q80)
and Δ(V>q90) refers to the measure computed on the top-
20% and top-10% in-degree nodes of each class.

Figure 2 reports the in-degree (number of followers) dis-
tribution of the minority and majority classes in each so-
cial network. We can observe that in the datasets with a ho-
mophilic minoritiy (TUENTI-A16 and POKEC-A21), the
minority class exhibits an advantage in terms of high in-
degree nodes.

4.2 Disparate visibility

We next apply the four link recommendation methods to
all our networks, recommending to each node k = 5 other
nodes; then we measure visibility, i.e., how many times each
node appears in the recommendations to other nodes. Ta-
ble 2 reports disparate visibility Δ(V) between the minority
and majority class, defined as in Eq. 2: a value of Δ(V) > 0
indicates that the minority class is favored in terms of vis-
ibility, while Δ(V) < 0 indicates that the majority class is
favored. A first observation we can draw is the following:

Observation 1 In graphs with a homophilic minority,
there is a disparate visibility in favor of the minority
class. When the minority is not homophilic, the disparate
visibility is in favor of the majority class. This holds for
all the link recommendation methods we tested.

Although the observation above holds true regardless of

the recommender we tested, we observe that the effect is
more evident with the two more sophisticated methods, ALS
and SLS. For instance, in the POKEC-A21 dataset, with a
minority almost as large as the majority (sm = 0.46), a ho-
mophilic minority (hm = 0.34) and a slightly homophilic
majority (hM = 0.19), the ALS recommender gives high
visibility to the minority (Δ(V) = 0.9).

We conjecture that this result might depend on the fact
that, when in presence of a homophilic minority, the minor-
ity class presents more nodes with high in-degree than the
majority. Thus Table 2 also reports what happens when we
exclude the top-20% (column Δ(V<q80)) and the top-10%
(column Δ(V<q90)) high in-degree nodes from each of the
two classes.

As expected, when we remove hubs from the analysis,
the disparate visibility in favor of the minority class in
the datasets with homophilic minority (TUENTI-A16 and
POKEC-A21) gets reduced substantially. This is confirmed
by the columns Δ(V>q80) and Δ(V>q90) which focus only
on the top-20% and the top-10% high-degree nodes, for
which the disparate visibility in favor of the minority is
very high. Of course this does not hold for the RND recom-
mender, which depends much less on the in-degree of the
nodes than the other recommenders.

When considering the TUENTI-G network partitioned by
gender, the size of the minority is much smaller than that of
the majority (sm = 0.39), and both groups are characterized
by neutral homophily (neither homophily nor heterophily).
Under this setting, the distribution of visibility harms the mi-
nority. For nodes with highest degree, the effect is mitigated,
but still indicating that minority nodes are receiving slightly
less visibility than what should correspond to them given
their degree. Consequently, excluding nodes with highest
degree, the difference in visibility is even stronger, show-
ing that minority long-tail nodes are at a disadvantage when
compared to their peers in the other group.

TUENTI-A30 is characterized by the smallest minority
(sm = 0.04), and absence of homophily in both majority
and minority groups. Under this setting, similarly to what
happened in the TUENTI-G network, the minority receives
less visibility (even more than in the TUENTI-G network).
Also in this case, the effect is slightly mitigated when look-
ing at the nodes in the top of the in-degree distributions and
exaggerated for the rest of the graph.

169



Observation 2 The hubs existing in the minority group
receive large visibility. In contexts in which the minority
is homophilic, this exaggerates the disparate visibility in
favor of the minority. In contexts in which the minority is
not homophilic, this helps slightly mitigate the disparate
visibility against the minority.

This last consideration motivates further investigation of
the interplay between in-degree, visibility, and the belonging
to the minority or the majority class.

4.3 Rich-get-richer effect

We next study inequality of visibility of nodes within each
of the two classes. Figure 3 reports Lorenz Curves5 of vis-
ibility of nodes (ψ) and in-degree (denoted as din) inside
the two subgroups. Lorenz Curves are a popular graphical
tool to show the cumulative distribution of a variable in-
side a population, emphasizing the differences with respect
to a hypothetical random distribution. They are widely used
to evidence inequality in wealth distribution among coun-
tries or more generally, comparing the wealth distribution of
subpopulations (Chakravarty 2012). These plots present on
the x-axis the percentile of the population and on the y-axis
the fraction of cumulative distribution of the wealth. For in-
stance a point (0.8, 0.2) indicates that 80% of the population
has 20% of the wealth. In case of absolute inequality, all
the wealth is assigned to only one person and the line corre-
spond to the x-axis. In the case of perfect equality, the wealth
is distributed equally along the sample, corresponding to the
x = y diagonal.

In Figure 3, the “wealth” corresponds to the in-degree (de-
noted as din) of nodes and to their visibility (ψ) with re-
spect to the recommendations produced by the ALS and SLS
methods inside the two classes. We report only two methods
for sake of space, the other methods produce similar results.

The first (well-known) observation on Figure 3 is that
link recommenders amplify the intrinsic “inequality” of the
in-degree distribution, as shown by the difference existing
between the solid lines and the dashed lines. This rich-get-
richer effect is innate in the link recommendation task, thus
not surprising. Instead, more surprising is the fact that such
effect is stronger within the minority than within the ma-
jority class (difference between the dashed blue line and the
dashed red line) and this is consistent among all datasets and
all recommenders, although being more evident in datasets
with a homophilic minority. This confirms what we observed
in Table 2, i.e., the fact that there are a few hubs that receive
most of the visibility in the minority class.

Observation 3 Recommenders amplify the rich-get-
richer phenomena observed for in-degree, thus introduc-
ing more inequality of visibility. Such observed inequality
is stronger within the minority class compared to the ma-
jority class, especially when the minority is homophilic.

4.4 Most visible nodes

We investigate further these observations by showing the
fraction of nodes of the minority class that belong to the

5https://en.wikipedia.org/wiki/Lorenz curve

ALS over TUENTI-A16 SLS over TUENTI-A16

ALS over POKEC-A21 SLS over POKEC-A21

ALS over TUENTI-A30 SLS over TUENTI-A30

ALS over TUENTI-G SLS over TUENTI-G

Figure 3: (Best seen in color.) Lorenz Curves depicting
inequality. Dashed lines represent recommendations, solid
lines represent in-degree. The minority is in red, the ma-
jority in blue. Recommendations introduce more inequality
than the degree distribution, and this inequality is stronger
in the minority class.

most visible nodes. Figure 4 reports the fraction of nodes
belonging to the minority class that are among the most vis-
ible ones on each dataset and for each recommender. For in-
stance, in the left-most point of Figure 4(b) we can see that in
the POKEC-A21 dataset, while the minority class represents
46% of the population, it rises to 58-65% (depending on the
recommender) when checking only the 10% of most visible
nodes. A similar observation holds for the other graph with
homophilic minority (TUENTI-A16).

However, on graphs in which the minority is not ho-
mophilic, the trend is completely overturned. For instance,
in the TUENTI-G dataset (Figure 4(d)) while the minority
class represents 39% of the overall population, when fo-
cusing only on the sub-population of the 10% most visible
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nodes, the minority class is under-represented: i.e., 32-37%
(depending on the recommender).

Observation 4 The minority class is over-represented in
the sub-population of most recommended nodes when the
minority is homophilic, and under-represented when the
minority is not homophilic.

Most of these observations seen so far are rooted in
the fact that in the datasets with a homophilic minority
(TUENTI-A16 and POKEC-A21), in-degree influences dif-
ferences in visibility distribution.

However, it is interesting to ask whether two nodes with
similar in-degree, one from the minority and one from the
majority class, have similar visibility.

4.5 Individual fairness

We now adopt an individual fairness standpoint, i.e., the
principle according to which similar individuals should re-
ceive a similar treatment (Dwork et al. 2012). In our setting,
being similar means having similar in-degree (e.g., a similar
number of “followers” in a social networking site). There-
fore, we sort nodes by ψ/din, i.e., the number of times a
node is recommended divided by its in-degree.

Figure 5 shows that, contrarily to what is seen in Fig-
ure 4, if we normalize by in-degree then nodes in the minor-
ity group are under-represented among top nodes, regardless
of the level of homophily of the minority. For instance, in all
graphs and all recommenders, if we take the top-40% nodes
by ψ/din, then the fraction of nodes belonging to the minor-
ity class is always below the dotted line, which represents
the relative size of the minority in the network.

Observation 5 When taking into account in-degree,
nodes in the minority class are disadvantaged in terms
of visibility, regardless of the homophily of the minor-
ity class. In other words, among nodes with similar in-
degree, the ones that belong to the majority class are
likely to be recommended more.

5 Observations on Synthetic Graphs

Synthetic networks allow us to test the extent to which the
observations on real-world graphs hold for a wider range
of configurations: in particular, they allow us to control the
level of homophily in the two groups and the relative size of
the minority (which would be impossible to do on real-world
graphs).

We next discuss how we generate syntectic networks.

5.1 Data generation process

Our goal is to generate bi-populated directed networks
where we can control the homophily of each of the two
groups and their relative size. This is a non-trivial task. Our
solution is inspired by the Biased Preferential-Attachment
model introduced for undirected graphs (Lee et al. 2019),
and that we extend to produce directed graphs.

Under our model, the tendency to connect to other nodes
is regulated by in-degree distribution and in-process ho-
mophily. The latter, which represents for each group the ten-

dency to connect to same peers along the process, is indi-
cated by ρ, which is a non-negative coefficient bounded in
the interval (0, 1]. Nodes are partitioned into a minority m
and a majority M , where a generic node v is associated to
the minority m with probability pm and to the majority M
with probability pM = (1− pm). In the long run, these two
probabilities correspond to the fraction of nodes belonging
to the two partitions. The value of ρ depends on the class of
the source node, i.e., assuming u as new node to add with
c(u) = m, ρuv corresponds to hm if c(u) = c(v), other-
wise ρuv = (1−hm). Considering the in-process homophily
values for the minority and the majority group, respectively
expressed as ρm and ρM , these two parameters are directly
proportional to the observed homophily indicated as hm and
hM . In general, fixing ρ = 0.5 for one class generates a neu-
tral group (h = 0), ρ > 0.5 generates a homophilic group
(h > 0) and, finally, ρ < 0.5 generates a heterophilic group
(h < 0). The process designed to generate a bi-populated
graph G = (V,E, c) is the following:
1. Initialization. |V | = N is the network size and dout the

number of outgoing out-links from each new node (i.e.,
|E| = N × dout). Then dout nodes are initialized, form-
ing a fully-connected graph. To reduce randomness, in the
initialization phase there is no real majority class, since
the two groups are equally distributed.

2. Add node. A new node v is added to the graph, belonging
to the minority with probability pm.

3. Add edges. For the new node v, we generate dout out-
links, each one with the following probability that incor-
porates both in-process homophily and rich-get-richer ef-
fect:

pu =
ρvu

(
din(u) +A

)
∑

w∈V

ρvw
(
din(w) +A

)

The A constant, introduced in the original Biased
Preferential-Attachment model to avoid penalizing new
nodes, is fixed to 1.

The process terminates when the graph reaches |V | = N .

5.2 Impact of homophily

In this first set of experiments, we aim at investigating ho-
mophilic and heterophilic situations for both groups. We
keep the same minority/majority partition (sm = 0.3) with
networks having 10,000 nodes each and, to show more
robust results, each configuration expressed in terms of
(ρm, ρM ), is tested 10 times. Consequently, metrics com-
puted over networks with the same configuration are evalu-
ated through their average. We generate three distinct groups
of configurations:
• S1. We create a neutral majority with ρM = 0.5, and vary

the level of homophily of the minority ρm ∈ [0.2, 0.9].
• S2. We create a neutral minority with ρm = 0.5, and vary

the level of homophily of the majority ρM ∈ [0.2, 0.9].
• S3. We create a homophilic majority and a homophilic

minority, testing 4 possible configurations of (ρM , ρm) in
the set {0.7, 0.9}.
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(a) TUENTI-A16 (b) POKEC-A21 (c) TUENTI-A30 (d) TUENTI-G

Figure 4: Portion of the minority class in the top nodes, sorted by ψ.

(a) TUENTI-A16 (b) POKEC-A21 (c) TUENTI-A30 (d) TUENTI-G

Figure 5: Portion of the minority class in the top nodes, sorted by ψ/din.

Figure 6: (Best seen in color.) Distribution of Δ(V) observed
in S1 and S2. The minority comprises 30% of the nodes
(sm = 0.3). In the left plot, the majority is neutral and the
heterophily/homophily of the minority varies. In the right
plot, the minority is neutral and the heterophily/homophily
of the majority varies.

Figure 6 presents the overall visibility, Δ(V), given by
the different recommenders, comparing the two settings in
which a group is homophilic but the other is not (S1 and
S2). Looking at the Δ(V) obtained in configuration S1 (left
side in Figure 6), the minority indeeds obtains more visibil-
ity when it is homophilic. In particular, the more the minor-
ity is homophilic, the more visibility it gets. In contrast, if
the minority is heterophilic, it is the majority that benefits in
terms of visibility. Although all the recommenders behave
similarly, these effects are more evident in ALS and SLS.
In S2, the homophilic majority leads to an analogous effect;
indeed when homophilic, it receives more visibility, while
when heterophilic, it facilitates the neutral minority to get
more than their representation (right side of Figure 6).

The analysis of the overall visibility in the case in which
both groups are homophilic (S3) is presented in the heatmap
in Figure 7. The x-axis represents ρM , while the y-axis re-
ports the ρm values; each cell of the matrix contains the val-

ALS SLS

ADA RND

Figure 7: (Best seen in color.) Visibility Δ(V) computed
over networks characterized by different homophily of the
minority ρm (y-axis) and homophily of the majority ρM (x-
axis).

ues of Δ(V) under that setting. In case of neutral homophily
for both groups (ρ = 0.5), no disparate visibility is given by
any of the algorithms (except for ADA, who gives a slight
advantage to the minority). For the scenario in which both
groups are highly homophilic (ρ = 0.9 and ρ = 0.7), the
majority is slightly advantaged. The worst scenarios can be
observed in cases of one extremely homophilic class and
neutral the other (top left and bottom right cells of each ma-
trix), which present the values of Δ(V) with strongest inten-
sity in absolute value (again, this phenomenon is especially
emphasized by ALS and SLS). These extremes cases cap-
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Top-10% ordered by ψ Top-20% ordered by ψ

Top-10% ordered by ψ/din Top-20% ordered by ψ/din

Figure 8: Fraction of minority class in S1 in the top positions
of rankings ordered by visibility ψ (first row) and by degree-
normalized visibility ψ/din (second row).

ture a trend in each heatmap in the figure, which indicates
that as soon as a group increases its homophily, it increases
its visibility.

To further confirm the role of homophily when consid-
ering visibility received at individual level, as previously
investigated for real data, we focus on the ranking gener-
ated either by visibility ψ or by degree-normalized visibility
ψ/din. We look at the fraction of nodes belonging to the
homophilic class in the top-10% and top-20% of the most
recommended nodes. Since we are capturing the “rich-get-
richer” and “individual fairness” phenomena we previously
captured for the minority group, in Figure 8 we report the re-
sults for S1. The first row of the figure shows that a stronger
homophilic tendency leads to present the homophilic class in
the highest positions of the recommendations, for all the al-
gorithms. While, looking at the second row, where nodes are
ordered by visibility normalised by the in-degree, the effect
is mitigated. In particular, for ADA, the configuration with
small homophily presents a minority still underrepresented.

5.3 Impact of minority size

Synthetic networks also enable us to investigate how visibil-
ity varies with the relative size of the minority in the graph.
To do so, we generate a fourth group of configurations, S4.
Keeping the minority homophilic (ρm = 0.8) and the major-
ity neutral (ρm = 0.5), we range the minority size sm from
5% to 45%. Each configuration in S4, characterized by a
different sm, corresponds to a graph with 10,000 nodes and
is generated 10 times (again, the results we present are an
average of those obtained for the 10 networks depicting the
same configuration). The observed homophily (hm) presents
μ = 0.4 and σ2 = 0.01, showing that the data generation
process is stable with respect to the different hm.

In Figure 9, we report the Δ(V) obtained for each config-
uration. We observe that being a small minority (sm = 0.05)

Figure 9: Distribution of Δ(V) for different minority sizes
sm and a homophilic minority (ρm = 0.8). The size of the
minority does not have an effect on visibility as dramatic as
the effect of homophily.

can mitigate the homophily effect, while keeping the minor-
ity with a size much lower than half of the graph (sm ∈
0.1, 0.2, 0.25) can positively impact the final gain in visibil-
ity. Despite these considerations, the size does not impact
visibility as much as homophily, since Δ(V), for each rec-
ommender, ranges in a small interval.

Observation 6 The relative size of the minority does not
impact visibility as much as homophily does.

6 Conclusions and Future Work

Although we have covered a wide range of scenarios in this
work, we include in this section along with our conclusions
several limitations and possible new directions.

The main take-home message of this work is that ho-
mophily plays a key role in the visibility that is given to a
group, sometimes regardless to the fact that this group may
be a minority in the network. We note that through the anal-
ysis we have done, we do not try to infer the reason be-
hind the observed phenomena, since our findings are mainly
driven by empirical evidence. This clearly leaves space to
further investigate analytically how homophily leads to dis-
parate visibility, and we expect this paper may initiate more
work in that direction.

We highlight algorithmic biases expressed in terms of
visibility, in a static “single round” of recommendations
but saying nothing about the long-term effect of the algo-
rithms. A natural extension would be a setting where the
graph evolves dynamically and repeated recommendations
are generated, opening to scenarios where homophily may
change over time as well as with the partition of minority-
majority.

The introduced visibility metric accounts for distribution
of recommended users but does not provide any information
regarding the ones receiving the suggestion. In this way, this
metric tells nothing about which source a group benefited
from, in terms of accumulated visibility. For this reason, we
plan to extend the study, designing alternative visibility met-

173



rics, able to integrate this feature. In addition, this kind of
analysis would clarify to what extent the effects are driven
by in-degree.

The synthetic data generator we have used has been de-
signed to reproduce user homophily and rich-get-richer ef-
fects, and the choice of using the biased preferential attach-
ment is due to its proven capacity to reproduce quite well
social network structures (Barabasi and Albert 1999). Nev-
ertheless, this assumption may be too narrow, and a natural
open question to address in the future would be the com-
parison of results produced by different data generation pro-
cesses. Also, extending this analysis to other models will
open to other use-cases where homophily would raise in
other forms, such as job platforms interaction networks or
research collaboration graphs.

Analogously, the experiments were designed assuming a
sensitive attribute that allows us to split nodes only in two
subgroups. In practice, user demographics may present more
than two attribute values (e.g., age, education) and, in those
cases, new definitions of disparate visibility and homophily
are needed.

This work sheds light on some key ethical aspects to con-
sider into the design of social networking products. Embrac-
ing these insights would lead to new mitigation strategies,
able to control disparate visibility. We plan to develop in-
and post-processing algorithms in this direction, evaluating
them under various homophily and group fairness defini-
tions.
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by the Agència per a la Competivitat de l’Empresa,
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